
Webpack and Babel
Front-end Developer tools

RE: create-react-app
• To this point, we have been using create-react-app for

all of our React workshops and assignments because it
easily allows us to develop React applications without the
need for manually building a server ourselves.

• CRA uses webpack-dev-server to serve your React
application and enable the hot reloading upon code update
that we all know and love.

• While using CRA does have a lot of benefits, and is generally
an acceptable way to approach starting a React project that
you may be building, we should keep some things in mind.

RE: create-react-app
• If we build out an API by creating our own server and

endpoints, connecting it to a CRA project during
development takes an extra step.

• Our own server would have to run concurrently with the
server running our React application, and we would have
to proxy any requests through our React application to hit
our self-made server.

• I.e. - We’d have two separate localhosts running on
different ports, requiring us to route our requests across
these ports.

RE: create-react-app
• More importantly, though, is that all of the configuration

for setting up a React application is taken care of for us,
which prevents us from understanding how to put one
together ourselves should the need arise.

• We can gain access to these configuration files by
ejecting our CRA, which can be helpful taking more
granular control of our React application.

• But, to even be able to do something like that, we should
understand what a couple of the more significant tools are
and how they work.

What is Webpack?

• Webpack is a tool you can install using npm.

• It takes your source JavaScript files using require and
module.exports, and produces a single, bundled
JavaScript that the browser understands.

• While it is not exclusive to React and has many use
cases, Webpack is extremely helpful for us because it can
create one large .js file, typically named bundle.js, that
contains all of our client (React/JS) code.

What is Webpack?
• To use, you can npm install --save-dev webpack

• Side note: --save-dev will save Webpack as a dev
dependency, meaning when you deploy to production
webpack would be ignored as a dependency. But why?

• Webpack is a build tool that we'll typically only need while
we're developing our app. When we deploy our app to a
production server, we may already have everything bundled
and ready to go, so we don’t need to install Webpack on the
production server. Instead, we can add a special flag (like
npm install --production) to signal that the install
should ignore dev dependencies.

Using Webpack

• By using Webpack to bundle our self-made React
application, we can then serve a single index.html file with
a script tag to load our bundle.js and any stylesheets that
we require to render our application in the browser.

• In doing so, we can ensure that we can properly route our
information through our own server by serving up the
index.html file that we will be integrating our React
application into.

Using Webpack
• npm install —save-dev webpack webpack-cli

• Create a webpack.config.js file in the root directory of
your project

• View this link to see a simple configuration example and
understand what each part of the config object is doing:
https://repl.it/@johnnybee4e/webpackConfigExample

• View the Webpack docs for further explanation: https://
webpack.js.org/configuration/

https://repl.it/@johnnybee4e/webpackConfigExample
https://webpack.js.org/configuration/
https://webpack.js.org/configuration/

Using Webpack
• To create a bundle.js file, you can create scripts in your

package.json that looks like this:

What is Babel?
• Babel is a JavaScript compiler

• According to the docs: “Babel is a toolchain that is mainly
used to convert ECMAScript 2015+ code into a
backwards compatible version of JavaScript in current
and older browser environments”

• Not every browser will support the most recent advances
in ECMAScript standards (ES6/7+), so we use Babel to
transform our syntax from the code that we are used to
writing into a browser-compliant version of JavaScript.

Using Babel
• npm install --save-dev @babel/core

• @babel/core provides the core functionality for Babel

• Create a .babelrc file in your project directory

• In it, create a JSON object with the key “presets” pointing to
an array of strings representing the Babel presets that you
want to use:

{
 “presets”: [“@babel/react”, “@babel/env”]
}

Using Babel
• To use the presets, be sure to npm install whichever ones

you require for your project. Some examples:

‣ `@babel/preset-env`: allows you to use the latest
JavaScript without needing to micromanage which
syntax transforms are needed by a target environment

‣ `@babel/preset-react`: Uses several babel
plugin options to convert JSX syntax.

• Make sure to also grab babel-loader to use with your
webpack.config.js

